Срок службы промышленного оборудования определяется износом его деталей — изменением размеров, формы, массы или состояния их поверхностей вследствие изнашивания, т. е. остаточной деформации от постоянно действующих нагрузок либо из-за разрушения поверхностного слоя при трении.
Величина износа характеризуется установленными единицами длины, объема, массы и др. Определяется износ по изменению зазоров между сопрягаемыми поверхностями деталей, появлению течи в уплотнениях, уменьшению точности обработки изделия и др. Износы бывают нормальными и аварийными. Нормальным, или естественным, называют износ, который возникает при правильной, но длительной эксплуатации машины, т. е. в результате использования заданного ресурса ее работы.
Аварийным (или прогрессирующем) называют износ , наступающий в течение короткого времени и достигающий таких размеров, что дальнейшая эксплуатация машины становится невозможной.
2. Виды и характер износа деталей.
Виды износа различают в соответствии с существующими видами изнашиваниями:
Коррозионный и др.
Механический износ является результатом действия сил трения при скольжении одной детали по другой. При этом виде износа происходит истирание (срезание) поверхностного слоя металла и искажение геометрических размеров у совместно работающих деталей. Износ этого вида чаще всего возникает при работе таких распространенных сопряжений деталей, как вал — подшипник, станина — стол, поршень — цилиндр и др.
Степень и характер механического износа деталей зависят от многих факторов:
Физико-механических свойств верхних слоев металла;
Условия работы и характера взаимодействия сопрягаемых поверхностей;
Относительной скорости перемещения;
Условий смазывания; степени шероховатости и др.
Наиболее разрушительное действие на детали оказывает абразивное изнашивание, которое наблюдается в тех случаях, когда трущиеся поверхности загрязняются мелкими абразивными и металлическими частицами. Обычно такие частицы попадают на трущиеся поверхности при обработке на станке литых заготовок.
Механический износ может вызываться и плохим обслуживанием оборудования, например нарушениями в подаче смазки, недоброкачественным ремонтом и несоблюдением его сроков, мощностной перегрузкой и т. д.
Усталостный износ является результатом действия на деталь переменных нагрузок, вызывающих усталость материала детали и его разрушение. Валы, пружины и другие детали разрушаются вследствие усталости материала в поперечном сечении. Для предотвращения усталостного разрушения важно правильно выбрать форму поперечного сечения вновь изготовляемой или ремонтируемой детали: она не должна иметь резких переходов от одного размера к другому. Рабочая поверхность исключает наличие рисок и царапин, которые являются концентратами напряжения.
Коррозионный износ является результатом изнашивания деталей машин и установок, находящихся под непосредственным воздействием воды, воздуха, химических веществ, колебаний температуры.
Под влиянием коррозии в деталях образуются глубокие разъедания, поверхность становится губчатой, теряет механическую прочность.
Обычно коррозионный износ сопровождается и механическим износом вследствие сопряжения одной детали с другой. В этом случае происходит так называемый коррозионно-механический, т.е. комплексный износ.
Износ при заедании возникает в результате прилипания («схватывания») одной поверхности к другой. Это явление наблюдается при недостаточной смазке, а также значительном давлении, при котором две сопрягаемые поверхности сближаются настолько плотно, что между ними начинают действовать молекулярные силы, приводящие к их схватыванию.
Характер механического износа деталей. Механический износ деталей оборудования может быть полным, если повреждена вся
поверхность детали, или местным, если поврежден какой-либо ее участок (рис.1).
В результате износа направляющих станков нарушаются их плоскостность, прямолинейность и параллельность вследствие действия на поверхности скольжения неодинаковых нагрузок. Например, прямолинейные направляющие 2 станка (рис. 1, а) под влиянием больших местных нагрузок приобретают вогнутость в средней части (местный износ), а сопрягаемые с ними короткие направляющие 1 стола становятся выпуклыми.
В подшипниках качения вследствие различных причин (рис. 2, а-г)
износу подвержены рабочие поверхности — на них появляются оспинки, наблюдается шелушение поверхностей беговых дорожек и шариков. Под действием динамических нагрузок происходит их усталостное разрушение; под влиянием излишне плотных посадок подшипников на вал и в корпус шарики и ролики защемляются между кольцами, в результате чего возможны перекосы колец при монтаже и другие нежелательные последствия.
Различные поверхности скольжения также подвержены характерным видам износа (рис. 3).
В процессе эксплуатации зубчатых передач вследствие контактной усталости материала рабочих поверхностей зубьев и под действием касательных напряжений возникает выкрашивание рабочих поверхностей, приводящее к образованию ямок на поверхности трения (рис. 3, а).
Разрушение рабочих поверхностей зубьев вследствие интенсивного выкрашивания (рис. 3, б) часто называют отслаиванием (происходит отделение от поверхности трения материала в форме чешуек).
На рис. 3, в показана поверхность, разрушенная коррозией. Поверхность чугунного порошкового кольца (рис. 3, г) повреждена вследствие эрозионного изнашивания, которое происходит при движении поршня в цилиндре относительно жидкости; находящиеся в жидкости пузырьки газа лопаются вблизи поверхности поршня, что создает местное повышение давления или температуры и вызывает износ деталей.
3. Признаки износа.
Об износе деталей машины или станка можно судить по характеру их работы. В машинах, имеющих коленчатые валы с шатунами (двигатели внутреннего сгорания и паровые, компрессоры, эксцентриковые прессы, насосы и др.), появление износа определяют по глухому стуку в местах сопряжений деталей (он тем сильнее, чем больше износ).
Шум в зубчатых передачах — признак износа профиля зубьев. Глухие и резкие толчки ощущаются каждый раз, когда меняется направление вращения или прямолинейного движения в случаях износа деталей шпоночных и шлицевых соединений.
Следы дробления на обтачиваемом валике, установленном в коническом отверстии шпинделя, свидетельствует об увеличении зазора между шейками шпинделя и его подшипниками вследствие их износа. Если обрабатываемая на токарном станке заготовка получается конической, значит изношены подшипники шпинделя (главным образом передний) и направляющие станины. Увеличение мертвого хода, укрепленных на винтах рукояток сверх допустимого — свидетельство износа резьбы винтов и гаек.
Об износе деталей машин часто судят по появившимся на них царапинам, бороздкам и забоинам, а также по изменению их формы. В некоторых случаях проверку осуществляют с помощью молотка: дребезжащий звук при обстукивании детали молотком свидетельствует о наличии в ней значительных трещин.
О работе сборочных единиц с подшипниками качения можно судить по характеру издаваемого ими шума. Лучше всего выполнять такую проверку специальным прибором — стетоскопом .
Работу подшипника можно проверять и по нагреву, определяемому на ощупь наружной стороной кисти руки, которая безболезненно выдерживает температуру до 60 °С.
Тугое проворачивание вала свидетельствует об отсутствии соосности между ним и подшипником или о чрезмерно тугой посадке подшипника на валу или в корпусе и т.д.
4. Способы обнаружения дефектов и восстановления деталей.
Большинство крупных и средних механических дефектов обнаруживают при внешнем осмотре. Для обнаружения мелких трещин можно использовать различные методы дефектоскопии. Наиболее простые капиллярные методы. Если, например, опустить деталь на 15-30 мин в керосин, то при наличии трещин жидкость проникает в них. После тщательной протирки, поверхности детали покрывают тонким слоем мела; мел поглощает керосин из трещин, в результате чего на поверхности появляются темные полосы, указывающие местонахождение дефекта.
Для более точного обнаружения трещин применяют жидкости, которые светятся при облучении ультрафиолетовыми лучами (капиллярный люминесцентный метод). Такой жидкостью является, например, смесь из 5 частей керосина, 2,5 частей трансформаторного масла и 2,5 частей бензина. Деталь погружают на 10-15 мин в жидкость, затем промывают и просушивают, после чего облучают ультрафиолетовыми лучами (ртутно-кварцевой лампой). В местах трещин появляется светло-зеленое свечение.
Трещины обнаруживают также методами магнитной дефектоскопии. Деталь намагничивают и смачивают магнитной суспензией (порошок окиси железа, размешанный в масле, керосине или водно!-мыльном растворе). В местах трещин образуются скопления порошка (рис. 4, а).
Продольные трещины обнаруживают при прохождении магнитных линий по окружности детали (рис. 4, б), а поперечные трещины — при продольном намагничивании (рис.4, в).
Дефекты, расположенные внутри материала, обнаруживают рентгеноскопическим методом. Рентгеновские лучи, проходя через проверяемую деталь, попадают на чувствительную пленку, на которой пустоты проявляются как более темные пятна, а плотные инородные включения — как более светлые пятна.
В настоящее время распространен ультразвуковой метод обнаружения трещин и других скрытых дефектов. К исследуемой детали прикладывают ультразвуковой зонд, основной частью которого является кристаллический генератор механических колебаний высокой частоты (0,5-10 МГц). Эти колебания, проходя через материал детали, отражаются от внутренних границ (внутренних трещин, поверхностей разрыва, раковин и т. д.) и попадают обратно в зонд. Прибор регистрирует время запаздывания отраженных волн относительно излученных. Чем больше это время, тем больше глубина, на которой расположен дефект.
Восстановление деталей и механизмов станков осуществляют следующими методами. Обработка резанием — метод ремонтных размеров — применяют для восстановления точности направляющих станков, изношенных отверстий или шеек различных деталей, резьбы ходовых винтов и др.
Ремонтным называют размер , до которого обрабатывают изношенную поверхность при восстановлении детали. Различают свободные и регламентированные размеры.
Сваркой исправляют детали с изломами, трещинами, сколами.
Наплавка является разновидностью сварки и заключается в том, что на изношенный участок наплавляют присадочный материал, более износостойкий, чем материал основной детали.
Широкое распространение получил способ восстановления деталей из чугуна методом сварка — пайка латунной проволокой и прутками из медно-цинковых оловянных сплавов. Этот способ не требует нагрева свариваемых кромок до расплавления, а лишь до температуры плавления припоя.
Металлизация заключается в расплавлении металла и распылении его струей сжатого воздуха на мелкие частицы, которые внедряются в неровности поверхности, сцепляясь с ними. Металлизацией может быть наращен слой от 0,03 до 10 мм и выше.
Металлизационные установки могут быть газовые (металл плавится в пламени газовой горелки) и дуговые (схема которого показана на рис.5).
Хромирование представляет собой процесс восстановления изношенной поверхности детали осаждением хрома электролитическим путем(рис.6), толщина хромирования до 0.1 мм.
Все многообразие методов ремонта наглядно представлено на рис.7.
5. Модернизация станков.
При капитальном ремонте желательно осуществлять модернизацию станков с учетом условий эксплуатации и последних достижений науки и техники.
Под модернизацией станков понимают внесение в конструкцию частичных изменений и усовершенствований в целях повышения их технического уровня до уровня современных моделей аналогичного назначения (общетехническая модернизация) или для решения конкретных технологических задач производства путем приспособления оборудования к более качественному выполнению определенного вида работ (технологическая модернизация). В результате модернизации повышается производительность оборудования, уменьшаются эксплуатационные расходы, снижается брак, а в ряде случаев увеличивается длительность межремонтного периода.
Представление об основных направлениях модернизации металлорежущих станков дает схема, приведенная на рисунке 8.
1.Техническая диагностика оборудования.
Техническое диагностирование (ТД) – элемент Системы ППР, позволяющий изучать и устанавливать признаки неисправности (работоспособности) оборудования, устанавливать методы и средства, при помощи которых дается заключение (ставится диагноз) о наличии (отсутствии) неисправностей (дефектов). Действуя на основе изучения динамики изменения показателей технического состояния оборудования, ТД решает вопросы прогнозирования (предвидения) остаточного ресурса и безотказной работы оборудования в течение определенного промежутка времени.
Техническая диагностика исходит из положения, что любое оборудование или его составная часть может быть в двух состояниях – исправном и неисправном. Исправное оборудование всегда работоспособно, оно отвечает всем требованиям ТУ, установленных заводом-изготовителем. Неисправное (дефектное) оборудование может быть как работоспособно, так и неработоспособно, т. е. в состоянии отказа. Отказы являются следствием износа или разрегулировки узлов.
Техническая диагностика направлена в основном на поиск и анализ внутренних причин отказа. Наружные причины определяются визуально, при помощи измерительного инструмента, несложных приспособлений.
Особенность ТД состоит в том, что она измеряет и определяет техническое состояние оборудования и его составных частей в процессе эксплуатации, направляет свои усилия на поиск дефектов. Зная техническое состояние отдельных частей оборудования на момент диагностирования и величину дефекта, при котором нарушается его работоспособность, можно предсказать срок безотказной работы оборудования до очередного планового ремонта, предусмотренного нормативами периодичности Системы ППР.
Заложенные в основу ППР нормативы периодичности являются опытно усредненными величинами. Но Любые усредненные величины имеют свой существенный недостаток: даже при наличии ряда уточняющих коэффициентов они не дают полной объективной оценки технического состояния оборудования и необходимости вывода в плановый ремонт. Почти всегда присутствуют два лишних варианта: остаточный ресурс оборудования далеко не исчерпан, остаточный ресурс не обеспечивает безаварийную работу до очередного планового ремонта. Оба варианта не обеспечивают требование Федерального закона № 57-ФЗ об установлении сроков полезного использования основных фондов путем объективной оценки потребности его постановки в ремонт или вывода из дальнейшей эксплуатации.
Объективным методом оценки потребности оборудования в ремонте является постоянный или периодический контроль технического состояния объекта с проведением ремонтов лишь в случае, когда износ деталей и узлов достиг предельной величины, не гарантирующей безопасной, безотказной и экономичной эксплуатации оборудования. Такой контроль может быть достигнут средствами ТД, а сам метод становится составной частью Системы ППР (контроля).
Другой задачей ТД является прогнозирование остаточного ресурса оборудования и установления срока его безотказной работы без ремонта (особенно капитального), т. е. корректировка структуры ремонтного цикла.
Техническое диагностирование успешно решает эти задачи при любой стратегии ремонта, особенно стратегии по техническому состоянию оборудования.
Основным принципом диагностирования является сравнение регламентированного значения параметра функционирования или параметра технического состояния оборудования с фактическим при помощи средств диагностики. Под параметром здесь и далее согласно ГОСТ 19919-74 понимается характеристика оборудования, отображающая физическую величину его функционирования или технического состояния.
Целями ТД являются:
Контроль параметров функционирования, т. е. хода технологического процесса, с целью его оптимизации;
Контроль изменяющихся в процессе эксплуатации параметров технического состояния оборудования, сравнение их фактических значений с предельными значениями и определение необходимости проведения ТО и ремонта;
Прогнозирование ресурса (срока службы) оборудования, агрегатов и узлов с целью их замены или вывода в ремонт.
2. Требования к оборудованию, переводимому на техническое диагностирование.
В соответствии с ГОСТ 26656-85 и ГОСТ 2.103-68 при переводе оборудования на стратегию ремонта по техническому состоянию в первую очередь решается вопрос о его приспособленности для установки на нем средств ТД.
О приспособленности находящегося в эксплуатации оборудования к ТД судят по соблюдению показателей надежности и наличию мест для установки диагностической аппаратуры (датчиков, приборов, монтажных схем).
Далее определяют перечень оборудования, подлежащего ТД, по степени его влияния на мощностные (производственные) показатели производства по выпуску продукции, а также на основе результатов выявления «узких мест» по надежности в технологических процессах. К этому оборудованию, как правило, предъявляются повышенные требования надежности.
В соответствии с ГОСТ 27518-87 конструкция оборудования должна быть приспособлена для ТД.
Для обеспечения приспособленности оборудования к ТД его конструкция должна предусматривать:
Возможность доступа к контрольным точкам путем вскрытия технологических крышек и люков;
Наличие установочных баз (площадок) для установки виброметров;
Возможность подключения и размещения в закрытых жидкостных системах средств ТД (манометров, расходометров, гидротесторов в жидкостных системах) и подключение их к контрольным точкам;
Возможность многократного присоединения и отсоединения средств ТД без повреждения устройств сопряжения и самого оборудования в результате нарушения герметичности, загрязнения, попадания посторонних предметов во внутренние полости и т. д.
Перечень работ по обеспечению приспособленности оборудования к ТД приводится в техническом задании на модернизацию переводимого на ТД оборудования.
После определения перечня оборудования, переводимого на ремонт по техническому состоянию, подготавливается исполнительная техническая документация по разработке и внедрению средств ТД и необходимой модернизации оборудования. Перечень и очередность разработки исполнительной документации приведены в табл. 1.
3. Выбор диагностических параметров и методов технического диагностирования.
Прежде всего, определяются параметры, подлежащие постоянному или периодическому контролю для проверки алгоритма функционирования и обеспечения оптимальных режимов работы (технического состояния) оборудования.
По всем агрегатам и узлам оборудования составляется перечень возможных отказов. Предварительно проводится сбор данных об отказах оборудования, оснащаемого средствами ТД, или его аналогов. Анализируется механизм возникновения и развития каждого отказа и намечаются диагностические параметры, контроль которых, плановое техническое обслуживание и текущий ремонт могут предотвратить отказ. Анализ отказов рекомендуется проводить по форме, представленной в табл. 2.
По всем отказам намечаются диагностические параметры, контроль которых поможет оперативно отыскать причину отказа, и метод ТД (см. табл.3).
Определяется номенклатура деталей, износ которых приводит к отказу.
На практике получили распространение диагностические признаки (параметры), которые можно разделить на три группы:
1) Параметры рабочих процессов
(динамика изменения давления, усилия, энергии), непосредственно характеризующие техническое состояние оборудования;
2) Параметры сопутствующих процессов или явлений
(тепловое поле, шумы, вибрации и др.), косвенно характеризующие техническое состояние;
3) Параметры структурные
(зазоры в сопряжениях, износ деталей и др.), непосредственно характеризующие состояние конструктивных элементов оборудования.
Исследуется возможность сокращения числа контролируемых параметров за счет применения обобщенных (комплексных) параметров.
Для удобства и наглядности методов и средств ТД разрабатываются функциональные схемы контроля параметров технологических процессов и технического состояния оборудования.
При выборе методов ТД учитывают следующие основные критерии оценки его качества:
Экономическая эффективность процесса ТД;
Наличие выпускаемых датчиков и приборов;
Универсальность методов и средств ТД.
По результатам анализа отказов оборудования разрабатываются мероприятия по повышению надежности оборудования, в том числе разработка средств ТД.
4. Средства технической диагностики.
По исполнению средства разделяются на:
— внешние — не являющиеся составной частью объекта диагностирования;
— встроенные — с системой измерительных преобразователей(датчиков) входных сигналов, выполненных в общей конструкции с оборудованием диагностирования как его составная часть.
Внешние средства ТД подразделяют на: стационарные , передвижные и переносные .
Если принято решение о диагностировании оборудования внешними средствами, то в нем должны быть предусмотрены контрольные точки, а в руководстве по эксплуатации средств ТД необходимо указать их расположение и описать технологию контроля.
Встраиваемые средства ТД контролируют параметры, выход значений которых за нормативные (предельные) значения влечет за собой аварийную ситуацию и зачастую не может быть предсказан заранее в периоды технического обслуживания.
По степени автоматизации процесса управления средства ТД подразделяют на автоматические, с ручным управлением (неавтоматические) и с автоматизированно-ручным управлением.
Возможности автоматизации диагностирования значительно расширяются при использовании современной компьютерной техники.
При создании средств ТД для технологического оборудования могут применяться различные преобразователи (датчики) неэлектрических величин в электрические сигналы, аналого-цифровые преобразователи аналоговых сигналов в эквивалентные значения цифрового кода, сенсорные подсистемы технического зрения.
К конструкциям и типам преобразователей, применяемых для средств ТД, рекомендуется предъявлять следующие требования:
Малогабаритность и простота конструкций;
Приспособленность для размещения в местах с ограниченным объемом размещения аппаратуры;
Возможность многократной установки и снятия датчиков при минимальной трудоемкости и без монтажа оборудования;
Соответствие метрологических характеристик датчиков информационным характеристикам диагностических параметров;
Высокая надежность и помехоустойчивость включая возможность эксплуатации в условиях электромагнитных помех, колебаний напряжения и частоты питания;
Устойчивость к механическим воздействиям(удары, вибрации) и к изменению параметров окружающей среды(температура, давление, влажность);
Простота регулирования и обслуживания.
Заключительным этапом создания и внедрения средств ТД является разработка документации.
Эксплуатационная конструкторская документация;
Документация на организацию диагностирования.
Кроме эксплуатационной, технологической и организационной документации на каждый переводимый объект разрабатываются программы прогнозирования остаточного и прогнозируемого ресурса.
1. Принципы современного сервиса.
Существует ряд общепринятых норм, соблюдение которых предостерегает от ошибок:
· Обязательность предложения. В глобальном масштабе компании, производящие высококачественные товары, но плохо обеспечивающие их сопутствующими услугами, ставят себя в очень невыгодное положение.
· Необязательность использования. Фирма не должна навязывать клиенту сервис.
· Эластичность сервиса. Пакет сервисных мероприятий фирмы может быть достаточно широк: от минимально необходимых до максимально целесообразных.
· Удобство сервиса. Сервис должен представляться в том месте, в такое время и в такой форме, которые устраивают покупателя.
Техническая адекватность сервиса.
Современные предприятия все в большей мере оснащаются новейшей техникой, резко усложняющий собственно технологию изготовления изделий. И если технический уровень оборудования и технологии сервиса не будет адекватен производственному, то трудно рассчитывать на необходимые качества сервиса.
· Информационная отдача сервиса. Руководство фирмы должно прислушиваться к информации, которую может выдать служба сервиса относительно эксплуатации товаров, об оценках и мнениях клиентов, поведении и приемов сервиса конкурентов и т.д.
· Разумная ценовая политика. Сервис должен быть не столько источником дополнительной прибыли, сколько стимулом для приобретения товаров фирмы и инструментом укрепления доверия покупателей.
· Гарантированное соответствие производства сервису. Добросовестно относящийся к потребителю производитель будет строго и жестко соразмерять свои производственные мощности с возможностями сервиса и никогда не поставит клиента в условия «обслужи себя сам».
2. Основные задачи системы сервиса.
В общем случае основными задачами в сервисе являются:
Консультирование потенциальных покупателей перед приобретением изделий данного предприятия, позволяющее им сделать осознанный выбор.
Подготовка персонала покупателя или его самого к наиболее эффективной и безопасной эксплуатации приобретенной техники.
Передача необходимой технической документации.
Предпродажная подготовка изделия во избежание малейшей возможности отказа в его работе во время демонстрации потенциальному покупателю.
Доставка изделия к месту его эксплуатации таким образом, чтобы свести к минимуму вероятность его повреждения в пути.
Приведение техники в рабочее состояние на месте эксплуатации (установка, монтаж) и демонстрация его покупателю в действии.
Обеспечение полной готовности изделия к эксплуатации в течение всего срока нахождения его у потребителя.
Оперативная поставка запасных частей и содержание для этого необходимой сети складов, тесный контакт с изготовителем запасных частей.
Сбор и систематизация информации о том, как эксплуатируется техника потребителем (условия, продолжительность, квалификация персонала и т.д.) и какие высказываются при этом жалобы, замечания, предложения.
Участие в совершенствовании и модернизации потребляемых изделий на основе анализа полученной информации.
Сбор и систематизация информации о том, как ведут сервисную работу конкуренты, какие новшества они предлагают клиентам.
Формирование постоянной клиентуры рынка по принципу: «Вы покупаете наш товар и используете его, мы делаем все остальное»
Помощь службе маркетинга предприятия в анализе и оценке рынков, покупателей и товара.
3. Виды сервиса по времени его осуществления.
По временным параметрам сервис разделяется на предпродажный и послепродажный, а послепродажный в свою очередь – на гарантийный и послегарантийный.
1. Предпродажный сервис
Всегда бесплатен и предусматривает подготовку изделия для представлению потенциальному или реальному покупателю. Предпродажный сервис, в принципе, включает 6 основных элементов:
Укомплектовывание необходимой технической документации, инструкциями о пуске, эксплуатации, техническом обслуживании, элементарных ремонтов и др. информация(на соответствующем языке);
Расконсервация и проверка перед продажей;
Консервация и передача потребителю.
2. Послепродажный сервис
Послепродажный сервис делится на гарантийный и послегарантийный по чисто формальному признаку: «бесплатно» (в первом случае) или за плату (во втором) производятся предусмотренные сервисным перечнем работы. Формальность здесь заключается в том, что стоимость работ, запасных частей и материалов в гарантийный период входит в продажную цену или в иные (послегарантийные) услуги.
Сервис в гарантийный период охватывает принятые на гарантийный период виды ответственности, зависящие от продукции, заключенного договора и политики конкурентов. В принципе, он включает:
1) расконсрвацию при потребителе;
2) монтаж и пуск;
3) проверку и настройку;
4) обучение работников правильной эксплуатации;
5) обучение специалистов потребителя поддерживающему сервису;
6) наблюдение изделия(системы) эксплуатации;
7) осуществление предписанного технического обслуживания;
8) осуществление(при необходимости) ремонта;
9) поставку запасных частей.
Предложенный перечень услуг в основном относится к сложной дорогостоящей технике производственного назначения.
Сервис в послегарантийный период включает аналогичные услуги, наиболее распространенными из которых являются:
Наблюдение за изделием в эксплуатации;
Повторное обучение клиентов;
Разнообразная техническая помощь;
Обеспечение запасными частями;
Модернизация изделия(по согласованию с заказчиком).
Существенное отличие послегарантийного сервиса состоит в том, что он осуществляется за плату, а его объем и цены определяются условиями контракта на данный вид сервиса, прейскурантами и иными подобными документами.
Таким образом, сервисная политика охватывает систему действий и решений, связанных с формированием у потребителя убеждения, что с покупкой конкретного изделия или комплекса он гарантирует себе надежные тылы и может концентрироваться на своих основных обязанностях.
Однако, следует подчеркнуть, что для формирования конкурентоспособной маркетинговой сервисной политики еще на этапе разработки продукта необходимо осуществить следующие действия:
а) изучение потребительского спроса по рынкам в той его части, которая связана с принятыми конкурентами формами, методами и условиями сервиса по аналогичным товарам;
б) систематизация, анализ и оценка собранной информации для выбора решения по организации сервиса; разработка вариантов решений с учетом особенностей продукта, рынка и целей организации;
в) сравнительный анализ вариантов;
г) участие специалистов по сервису в проектно-конструкторской деятельности для совершенствования изделия с учетом последующего технического обслуживания.
В случае наиболее полной реализации фирменный сервис включает в себя целый ряд элементов, отражающих жизненный цикл изделия с момента его изготовления до утилизации(рис.1).
4. Виды сервиса по содержанию работ.
Констатируя тенденции последнего времени, нужно отметить, что все большее значение играют не чисто технические работы, а разнообразные (в том числе, косвенные) интеллектуальные услуги. И совершенно неважно, в какой форме подаются эти услуги: особый набор рецептов для микроволновых печей или комплекс индивидуальных консультаций для данного фермера по вопросам обработки именно его участка.
По этой причине происходит деление сервиса по содержанию работ:
— жесткий сервис включает в себя все услуги, связанные с поддержанием работоспособности, безотказности и заданных параметров работы товара;
— мягкий сервис включает весь комплекс интеллектуальных услуг, связанных с индивидуализацией, т. е. с более эффективной эксплуатацией товара в конкретных условиях работы у данного потребителя, а также просто с расширением сферы полезности товара для него.
Грамотный производитель стремится сделать для покупателя максимум возможного в любой ситуации. Когда производитель обеспечивает фермеру квалифицированную оценку наиболее эффективных режимов обработки почвы на купленном тракторе — это прямой сервис. А если для поддержания хороших взаимоотношений с клиентом дилер приглашает жену фермера на бесплатные курсы «Домашний бухгалтер», организованные специально для жен клиентов фирмы, то здесь мы можем говорить о косвенном сервисе. Это, конечно, прямого отношения к покупке трактора не имеет, но клиенту это полезно и приятно. Таким образом, косвенный сервис хотя и сложными путями, но вносит свой вклад в успехи фирмы.
5. Основные подходы к осуществлению сервиса.
Исходя из сложившейся в развитых странах практики, рядом западных авторов предложена следующая классификация подходов к осуществлению сервиса:
1) Негативный подход.
При данном подходе производитель рассматривает проявившиеся дефекты изделия как случайно возникшие ошибки. Сервис рассматривается не как деятельность, добавляющая потребительскую стоимость продукта, а скорее, как излишние расходы, которые нужно поддерживать как можно меньшими.
2) Исследовательский подход.
В организационном отношении во многом похож на предыдущий. Но в отличие от него акцент делается на внимательный сбор и обработку информации о дефектах, используемой в дальнейшем для улучшения качества продукции. Этот подход больше опирается на выяснение причины возникновения дефекта, нежели на ремонт самого изделия.
3) Сервис как хозяйственная деятельность.
Сервис может быть серьезным источником прибыли организации, особенно, если продано большое количество изделий и систем, которые уже находятся в послегарантийном периоде. Любое совершенствование продукта в направлении увеличения надежности ограничивает доходы от сервиса; но, с другой стороны, создает предпосылки для успеха в конкурентной борьбе.
4) Сервис — обязанность поставщика.
При работе любого производственного оборудования происходят процессы, связанные с постепенным снижением его рабочих характеристик и изменением свойств деталей и узлов. Накапливаясь, они могут привести к полной остановке и серьезной поломке. Чтобы избежать негативных экономических последствий, предприятия организуют у себя процесс управления износом и своевременного обновления основных фондов.
Определение износа
Износом, или старением, называют постепенное снижение эксплуатационных характеристик изделий, узлов или оборудования в результате изменения их формы, размеров или физико-химических свойств. Эти изменения возникают постепенно и накапливаются в ходе эксплуатации. Существует много факторов, определяющих скорость старения. Негативно сказываются:
- трение;
- статические, импульсные или периодические механические нагрузки;
- температурный режим, особенно экстремальный.
Замедляют старение следующие факторы:
- конструктивные решения;
- применение современных и качественных смазочных материалов;
- соблюдение условий эксплуатации;
- своевременное техническое обслуживание, планово–предупредительные ремонты.
Вследствие снижения эксплуатационных характеристик снижается также и потребительская стоимость изделий.
Виды износа
Скорость и степень изнашивания определяется условиями трения, нагрузками, свойствами материалов и конструктивными особенностями изделий.
В зависимости от характера внешних воздействий на материалы изделия различают следующие основные виды износа:
- абразивный вид — повреждение поверхности мелкими частицами других материалов;
- кавитационный, вызываемый взрывным схлопыванием газовых пузырьков в жидкой среде;
- адгезионный вид;
- окислительный вид, вызываемый химическими реакциями;
- тепловой вид;
- усталостный вид, вызванный изменениями структуры материала.
Некоторые виды старения разбиваются на подвиды, как, например, абразивный.
Абразивный
Заключается в разрушении поверхностного слоя материала в ходе контакта с более твердыми частицами других материалов. Характерен для механизмов, работающих в условиях запыленности:
- горное оборудование;
- транспорт, дорожно-строительные механизмы;
- сельскохозяйственные машины;
- строительство и производство стройматериалов.
Противодействовать ему можно, применяя специальные упрочненные покрытия для трущихся пар, а также своевременно меняя смазку.
Газоабразивный
Данный подвид абразивного изнашивания отличается от него тем, что твердые абразивные частицы перемещаются в газовом потоке. Материал поверхности крошится, срезается, деформируется. Встречается в таком оборудовании, как:
- пневмопроводы;
- лопасти вентиляторов и насосов для перекачки загрязненных газов;
- узлы доменных установок;
- компоненты твердотопливных турбореактивных двигателей.
Зачастую газоабразивное воздействие сочетается с присутствием высоких температур и плазменных потоков.
Гидроабразивный
Воздействие аналогично предыдущему, но роль носителя абразива выполняет не газовая среда, а поток жидкости.
Такому воздействию подвержены:
- гидротранспортные системы;
- узлы турбин ГЭС;
- компоненты намывочного оборудования;
- горная техника, применяемая для промывки руды.
Иногда гидроабразивные процессы усугубляются воздействием агрессивной жидкой среды.
Кавитационный
Перепады давления в жидкостном потоке, обтекающем конструкции, приводят к возникновению газовых пузырьков в зоне относительного разрежения и их последующему взрывному схлопыванию с образование ударной волны. Эта ударная волна и является основным действующим фактором кавитационного разрушения поверхностей. Такое разрушение встречается на гребных винтах больших и малых судов, в гидротурбинном и технологическом оборудовании. Усложнять ситуацию могут воздействие агрессивной жидкой среды и наличие в ней абразивной взвеси.
Адгезионный
При продолжительном трении, сопровождающимся пластическими деформациями участников трущейся пары, происходит периодическое сближение участков поверхности на расстояние, позволяющее силам межатомного взаимодействия проявить себя. Начинает взаимопроникновение атомов вещества одной детали в кристаллические структуры другой. Неоднократное возникновение адгезионных связей и их прерывание приводят к отделению поверхностных зон от детали. Адгезионному старению подвержены нагруженные трущиеся пары: подшипники, валы, оси, вкладыши скольжения.
Тепловой
Тепловой вид старения заключается в разрушении поверхностного слоя материала или в изменении свойств глубинных его слоев под воздействием постоянного или периодического нагрева элементов конструкции до температуры пластичности. Повреждения выражаются в смятии, оплавлении и изменении формы детали. Характерен для высоконагруженных узлов тяжелого оборудования, валков прокатных станов, машин горячей штамповки. Может встречаться и в других механизмах при нарушении проектных условий смазки или охлаждения.
Усталостный
Связан с явлением усталости металла под переменными или статическими механическими нагрузками. Напряжения сдвигового типа приводят к развитию в материалах деталей трещин, вызывающих снижение прочности. Трещины приповерхностного слоя растут, объединяются и пресекаются друг с другом. Это приводит к эрозии мелких чешуеобразным фрагментов. Со временем такой износ может привести к разрушению детали. Встречается в узлах транспортных систем, рельсах, колесных парах, горных машинах, строительных конструкциях и т.п.
Фреттинговый
Фреттинг — явление микроразрушения деталей, находящихся в тесном контакте в условиях вибрации малой амплитуды — от сотых долей микрона. Такие нагрузки характерны для заклепок, резьбовых соединений, шпонок, шлицев и штифтов, соединяющих детали механизмов. По мере нарастания фреттингового старения и отслоения частичек металла последние выступают в роли абразива, усугубляя процесс.
Существуют и другие, менее распространенные специфические виды старения.
Типы износа
Классификация видов износа с точки зрения вызывающих его физических явлений в микромире, дополняется систематизацией по макроскопическим последствиям для экономики и ее субъектов.
В бухгалтерском учете и финансовой аналитике понятие износа, отражающее физическую сторону явлений, тесно связано с экономическим понятием амортизации оборудования. Амортизация означает как снижение стоимости оборудования по мере его старения, так и отнесение части этого снижения на стоимость производимой продукции. Это делается с целью аккумулирования на специальных амортизационных счетах средств для закупки нового оборудования или частичного усовершенствования его.
В зависимости от причин и последствий различают физический, функциональный и экономический.
Физический износ
Здесь подразумевается непосредственная утрата проектных свойств и характеристик единицы оборудования в ходе ее использования. Такая утрата может быть либо полной, либо частичной. В случае частичного износа оборудование подвергается восстановительный ремонт, возвращающий свойства и характеристики единицы на первоначальный (или другой, заранее оговоренный) уровень. При полном износе оборудование подлежит списанию и демонтажу.
Кроме степени, физический износ также разделяется на рода:
- Первый. Оборудование изнашивается в ходе планового использования с соблюдением всех норм и правил, установленных изготовителем.
- Второй. Изменение свойств обусловлено неправильной эксплуатацией либо факторами непреодолимой силы.
- Аварийный. Скрытое изменение свойств приводит к внезапному аварийному выходу из строя.
Перечисленные разновидности применимы не только к оборудованию в целом, но и к отдельным его деталям и узлам
Данный тип является отражением процесса морального устаревания основных фондов. Этот процесс заключается в появлении на рынке однотипного, но более производительного, экономичного и безопасного оборудования. Станок или установка физически еще вполне исправна и может выпускать продукцию, но применение новых технологий или более совершенных моделей, появляющихся на рынке, делает использование устаревших экономически невыгодным. Функциональный износ может быть:
- Частичным. Станок невыгоден для законченного производственного цикла, но вполне пригоден для выполнения некоторого ограниченного набора операций.
- Полным. Любое использование приводит к причинению убытков. Единица подлежит списанию и демонтажу
Функциональный износ также подразделяют по вызвавшим его факторам:
- Моральный. Доступность технологически идентичных, но более совершенных моделей.
- Технологический. Разработка принципиально новых технологий для выпуска такого же вида продукции. Приводит к необходимости перестройки всей технологической цепочки с полным или частичным обновлением состава основных средств.
В случае появления новой технологии, как правило, состав оборудования сокращается, а трудоемкость падает.
Кроме физических, временных и природных факторов на сохранность характеристик оборудования оказывают опосредованное влияние и экономические факторы:
- Падение спроса на выпускаемые товары.
- Инфляционные процессы. Цены на сырье, комплектующие и трудовые ресурсы растут, в то же время пропорционального роста цен на продукцию предприятия не происходит.
- Ценовое давление конкурентов.
- Рост стоимости кредитных услуг, используемых для операционной деятельности или для обновления основных фондов.
- Внеинфляционные колебания цен на рынках сырья.
- Законодательные ограничения на применение оборудования, не отвечающего стандартам по охране окружающей среды.
Экономическому старению и утрате потребительских качеств подвержена как недвижимость, так и производственные группы основных фондов. На каждом предприятии ведутся реестры основных фондов, в которых учитывается их износ и ход амортизационных накоплений.
Основные причины и способы как определить износ
Чтобы определить степень и причины износа, на каждом предприятии создается и действует комиссия по основным фондам. Износ оборудования определяется одним из следующих способов:
- Наблюдение. Включает в себя визуальный осмотр и комплексы измерений и испытаний.
- По сроку эксплуатации. Определяется как отношение фактического срока использования к нормативному. Значение этого отношения принимается за величину износа в процентном выражении.
- укрупненная оценка состояния объекта производится с помощью специальных метрик и шкал.
- Прямое измерение в деньгах. Сопоставляется стоимость приобретения новой аналогичной единицы основных средств и расходы на восстановительный ремонт.
- доходность дальнейшего использования. Оценивается снижение дохода с учетом всех издержек по восстановлению свойств по сравнению с теоретическим доходом.
Какую из методик применять в каждом конкретном случае — решает комиссия по основным средствам, руководствуясь нормативными документами и доступностью исходной информации.
Способы учета
Амортизационные отчисления, призванные компенсировать процессы старения оборудования, также допустимо определять по нескольким методикам:
- линейный, или пропорциональный расчет;
- способ уменьшаемого остатка;
- по суммарному сроку производственного применения;
- в соответствии с объемом выпущенной продукции.
Выбор методики осуществляется при создании или глубокой реорганизации предприятия и закрепляется в его учетной политике.
Эксплуатация оборудования в соответствии с правилами и нормативами, своевременные и достаточные отчисления в амортизационные фонды позволяют предприятиям сохранять технологическую и экономическую эффективность на конкурентоспособном уровне и радовать своих потребителей качественными товарами по разумным ценам.
В процессе эксплуатации авиационной техники самой распространенной причиной возникновения дефектов старения является износ, т.е. изменение размеров, формы и состояния поверхности деталей под действием различного рода нагрузок, сил трения и влияния окружающей среды.
В зависимости от абсолютного значения величины износа различают нормальный (естественный ), износ при котором повреждения, возникшие на деталях, не нарушают нормальной работы механизма. Зазоры в сочленениях при этом не выходят за допустимые пределы. Износ, при котором зазоры превышают допустимые пределы, появляются ударные нагрузки, называют дефектным. Наличие дефектного износа ухудшает работу соединения, вызывает нагрев деталей, заедания, задиры. Дефектный износ интенсивно прогрессирует и может привести к поломке деталей и, как следствие, отказу механизма.
На рис. 1.1 представлен процесс изменения зазоров в соединении. При разработке соединения определяется минимальный зазор И м, необходимый для компенсации температурных расширений и размещения смазки. Также устанавливается предельно допустимый зазор И 3 , при котором износ остается нормальным. Весь процесс износа можно разделить на три периода. Отрезок И м — 1 отражает процесс приработки поверхностей деталей, когда сглаживаются микронеровности. Этот период характеризуется достаточно интенсивным износом, особенно в самом начале процесса. По мере приработки износ стабилизируется, и наступает период нормального, установившегося износа, в течение которого зазор увеличивается медленно, с постоянной скоростью (отрезок 1-2). Период дефектного износа наступает, когда зазор достигнет предельного значения и начнет его превышать. Скорость износа при этом будет все быстрее возрастать.
Рис. 1.1. График зависимости величины износа И от времени работы V.
I — приработка; II — установившийся износ; III — дефектный износ; И м — 1 — период приработки; 1-2 — период установившегося износа; 2-3 — период дефектного износа до разрушения; И м — монтажный зазор; И 3 — предельно допустимый зазор; И п — зазор после приработки; а — угол наклона кривой, характеризующий
Для каждого механизма очень важно уловить момент перехода естественного износа в дефектный и прекратить эксплуатацию для замены или ремонта износившейся детали.
Различают три вида естественного износа: механический, коррозионный и усталостный.
Механический износ возникает в результате действия сил трения и ударных нагрузок в сопряженных деталях, имеющих взаимное перемещение. Выделяют следующие разновидности механического износа: абразивный, схватывание 1-го рода (атермическое), тепловой износ (схватывание 2-го рода), осповидный и окислительный.
Абразивный — самый распространенный вид износа, возникает от воздействия мелких твердых частиц, попадающих в зазоры между деталями со смазкой или другим путем. Эти частицы, подобно режущему инструменту, образуют на поверхности деталей риски и царапины, что ухудшает состояние поверхности и усугубляет износ. Разновидностью абразивного износа является газо-бразивный, при котором рабочие поверхности и передние кромки лопаток компрессора и лопасти воздушных винтов повреждаются частицами песка и пыли, попадающими вместе с воздухом.
Износ схватывания Нго рода возникает в малоподвижных сильно нагруженных соединениях. Скорость взаимного перемещения в таких соединениях не более 1 м/с, а удельное давление превышает предел текучести материала. При больших удельных давлениях происходит выдавливание масляной пленки из зазора между деталями, и в зонах непосредственного контакта начинают действовать силы молекулярного притяжения, под действием которых происходит схватывание поверхностных слоев деталей при относительно низкой температуре (отсюда второе название износа — атермическое схватывание). При этом с детали, имеющей меньшую поверхностную прочность, материал срывается сопряженной деталью и переносится на нее. В результате на деталях возникают выступы и раковины, поверхности становятся шероховатыми, что усиливает износ и в дальнейшем вызывает разрушение. Атермическое схватывание может происходить в относительно неподвижных соединениях, например в замках крепления лопаток компрессора газотурбинного двигателя.
Тепловой износ возникает при больших скоростях скольжения поверхностей деталей и повышенных удельных давлениях. При таких условиях происходит интенсивный рост температуры в поверхностных слоях материала детали вплоть до температуры плавления, что вызывает их разупрочнение, размазывание и унос частиц металла с поверхности трения. В результате возникает тепловое сваривание с заклиниванием деталей. Тепловому износу подвержены поршни и цилиндры поршневых двигателей, оси сателлитов в редукторах турбовинтовых двигателей.
Осповидный износ возникает в узлах, работающих при трении качения (поверхности зубчатых колес, тела качения в подшипниках), поверхность контакта у которых мала и подвержена высоким контактным напряжениям. При трении качения всегда присутствует явление проскальзывания, поскольку тела качения в узлах трения имеют различный радиус, что и приводит к формированию многократных повторных микродеформаций в сжатом объеме и возникновению остаточных напряжений. Проскальзывание может усугубляться неточностью изготовления пар трения и перекосами в зацеплениях. Такого рода изнашивание имеет усталостный характер и со временем приводит к возникновению трещин, развивающихся вглубь детали под небольшим углом к поверхности в направлении качения. Затем трещина вновь выходит на поверхность, образуя оспинки и раковины. При этом происходит отделение частиц материала детали (питтинг) размером 0,2-0,3 мм.
Окислительный износ возникает на деталях, работающих при трении скольжения и качения, в среде, насыщенной кислородом, и представляет собой процесс образования и разрушения на поверхностях трения тончайших пленок окислов. Этот вид износа характерен для узлов, работающих при сухом контакте или граничной смазке. В таких условиях поверхностная окисная пленка становится очень хрупкой, растрескивается и отслаивается, образуя абразивный материал, усиливающий износ.
Коррозионный (химический) износ — результат химического и электрохимического взаимодействия металлических деталей с окружающей средой. В зависимости от условий возникновения коррозии различают атмосферную, контактную, газовую коррозию, коррозию от воздействия агрессивных веществ и биологическую.
Атмосферная коррозия возникает при взаимодействии незащищенных деталей с атмосферной влагой. Процесс окисления в этом случае химический, а чаще более интенсивный электрохимический, так как атмосферная влага с растворенными в ней солями различных металлов и газами представляет собой электролит. Атмосферная коррозия более интенсивно развивается на загрязненных деталях и в атмосфере, сильно загрязненной промышленными отходами. От атмосферной коррозии страдают в первую очередь контровочные и крепежные детали, нижняя часть поверхности крыла и фюзеляжа, детали шасси и подпольная часть воздушного судна.
Различают контактную коррозию в сырых и сухих стыках деталей. При попадании влаги (электролита) в зазор между деталями из разнородных материалов возникает гальванический процесс, при котором разрушается деталь с более высоким электрическим потенциалом. Чем больше разность потенциалов деталей, тем интенсивней протекает процесс. На воздушных судах таким видом коррозии поражаются дюралюминиевые и магниевые детали, соединенные стальными болтами или соприкасающиеся со стальными деталями.
Коррозия, возникающая в сухих стыках деталей, совершающих элементарные перемещения относительно друг друга (вибрации), получила название фреттинг-коррозии. Она встречается в болтовых и заклепочных соединениях, в шлицевых соединениях, в стыках элементов конструкции, в узлах, собранных с прессовой посадкой. Природа возникновения фреттинг-коррозии достаточно сложна. Основной причиной разрушения поверхности материала в этих условиях являются усталостные и коррозионные процессы. Кроме того, возникают благоприятные условия для электрохимических процессов, которые также участвуют в разрушении контактирующих деталей. При этом на контактирующей поверхности обнаруживаются следы усталостного, абразивного и окислительного износа. Фреттинг-коррозия снижает усталостную долговечность материала в 1,5-2,5 раза, которая возрастает на порядок в условиях действия циклических нагрузок.
Газовая коррозия возникает на деталях под действием отработавших газов, образующихся в процессе сгорания топлива, в состав которых входят различные агрессивные химические соединения. Особо агрессивными из них являются соединения молибдена и серы, которые вызывают язвенную коррозию жаропрочных сплавов, проникающую на большую глубину. Для тонкостенных деталей, таких как выхлопные трубы, реактивные сопла, жаровые трубы, сопловые и рабочие лопатки турбин, это является опасным явлением, приводящим к их разрушению.
Коррозия от воздействия агрессивных веществ на воздушных судах может наблюдаться в зонах размещения бортовых аккумуляторных батарей, буфета-кухни, санузлов. Например, интенсивную коррозию вызывают растворы солей и кислот. Для дюралюминиевых сплавов особенно опасны щелочные растворы.
Биологическая коррозия — результат деятельности микроорганизмов, способных ускорять электрохимическую коррозию алюминиевых сплавов. Такой вид коррозионных повреждений наблюдается в первую очередь на воздушных судах с большими сроками службы, в зонах с ограниченным доступом при техническом обслуживании в процессе эксплуатации.
Усталостный износ возникает на деталях, работающих в условиях знакопеременных и вибрационных нагрузок в зонах концентрации напряжений. Такими зонами являются отверстия, пазы, галтели, переходы, резьбовые поверхности, шлицы, а также места расположения механических повреждений и коррозии. В точках материала, где внутренние напряжения складываются с напряжениями от повторных внешних нагрузок, возникает нарушение связей между кристаллами, и появляются микротрещины, которые постепенно увеличиваются и ослабляют сечение. Трещины возникают, как правило, на поверхности детали независимо от того, было ли связано нагружение с поверхностными напряжениями. В дальнейшем сечение настолько ослабляется, что не может выдержать нормальных нагрузок, и происходит разрушение. Усталостному износу подвержены все детали, которые работают в зонах вибрации и при трении качения, например детали воздушных судов и авиадвигателей.
В процессе эксплуатации оборудование и его элементы, подвергаясь различным воздействиям, изменяются по состоянию, размерам и свойствам. Эти изменения могут протекать плавно (закономерное изменение) и скачкообразно (незакономерное изменение). Причины указанных изменений — явления изнашивания, оцениваемые по изменению геометрических размеров элементов машин, их массы или по каким-либо другим косвенным признакам (износ вследствие изменения формы без потери массы и др.).
Изнашивание — процесс, приводящий к изменению не только внешних, но и прочностных характеристик элементов машин, что постепенно уменьшает их надежность и ведет к отказам в работе.
Наиболее интенсивно процесс изнашивания протекает в сопряженных элементах машин, особенно при взаимном их перемещении. На рис. 7 представлены основные факторы, определяющие процессы изнашивания в машинах.
Рис. 7. Основные факторы, определяющие процессы изнашивания в машинах и оборудованиях.
Износ — результат изнашивания, проявляющийся в виде отделения или остаточной деформации материала детали. Последствием износа, как правило, является нарушение сопряжений, кинематических связей и работы деталей данного узла или механизма в целом.
Изнашивание машин может быть механическим, молекулярно-механическим, коррозионно-механическим, коррозионным.
Механическое изнашивание происходит в результате механических воздействий и включает следующие виды изнашивания: абразивное, гидроабразивное, газоабразивное, эрозионное, усталостное, кавитационное.
Абразивное изнашивание возникает в результате режущего и царапающего действия твердых частиц. Эти частицы, попавшие извне или отделившиеся (выкрошенные, состроганные и т.п.) от взаимосоприкасающихся и трущихся деталей, в значительной мере увеличивают их износ.
Гидроабразивное изнашивание возникает в результате воздействия твердых частиц, попавших в поток масляной жидкости, служащей смазкой между деталями.
Газоабразивное изнашивание возникает в результате воздействия твердых частиц, попавших между трущимися деталями с потоками газа.
Эрозионное изнашивание поверхностей деталей происходит в результате воздействия потоков жидкости или газа, содержащих чрезмерно мелкие твердые частицы или включения.
Газоабразивное изнашивание характерно для двигателей внутреннего сгорания, а эрозионное — для его частей: клапанной системы, распылителей форсунок, жиклеров карбюраторов и др.
Усталостное изнашивание возникает в результате повторного деформирования материала деталей. Оно возникает и развивается в наиболее напряженных, преимущественно рабочих, поверхностных слоях деталей вследствие длительного действия нагрузок, особенно переменных по значению и направлениям. Мри этом виде изнашивания причиной поломок деталей являются усталостные трещины, которые начинают развиваться в той части поверхности, где действуют растягивающие напряжения, и, как правило, от того места, где появились различного рода риски, забоины, отслоения.
Кавитационное изнашивание проявляется при относительном перемещении твердых тел в жидкостной среде. Чаще всего оно наблюдается в гильзах блока цилиндров, систем охлаждения и смазки двигателей внутреннего сгорания, лопастей масляного и водяного насосов и т.п.
Молекулярно-механическое изнашивание происходит в результате одновременного воздействия механических и молекулярных или атомарных сил. Взаимосоприкасающиеся и трущиеся поверхности сопряженных деталей вследствие их неровностей и шероховатостей имеют контакты, через которые передаются значительные удельные нагрузки, поэтому возможны разрывы смазывающей пленки (масел, мазей), а при больших относительных скоростях перемещения поверхностей деталей возникает чрезмерный нагрев, приводящий к испарению смазывающей пленки масел или мазей и к схватыванию частиц соприкасающихся деталей. В дальнейшем происходит отрыв и разрушение мест схватывания деталей. При этом на одной из поверхностей образуется углубле –ние, а на другой — выступ, т.е. происходит перенос металла с одной поверхности на другую.
Рассматриваемый вид изнашивания наблюдается в процессе приработки деталей и элементов машин.
Коррозионно-механическое изнашивание происходит при трении материалов, вступивших в химическое взаимодействие со средой (кислородом воздуха и другими газами). Под действием агрессивной окислительной среды на взаимосоприкасающихся и трущихся поверхностях деталей образуются пленки окислов, которые в результате механического трения снимаются, а поверхности, освободившиеся от этих пленок, снова окисляются и т.д., т.е. происходит процесс изнашивания. Примером является изнашивание деталей цилиндропоршневой группы двигателей вследствие наличия в среде таких агентов коррозии, как серная, сернистая и органические кислоты.
Наиболее значительное влияние на процесс изнашивания оказывают силы трения, вызывая механический и другие виды износа взаимосоприкасающихся поверхностей. Причем возникающее в результате трения изнашивание представляет собой целый ряд одновременно протекающих процессов: истирание, смятие, окисление и др.
Процесс истирания возникает при скольжении одной детали машины или ее элемента относительно другой. Это явление называется трением первого рода и происходит вследствие того, что соприкасающиеся поверхности, как правило, имеют неровности (шероховатости), препятствующие свободному перемещению (скольжению) одной детали по другой. Процесс истирания происходит тем интенсивнее, чем более шероховаты соприкасающиеся поверхности. Интенсивность изнашивания возрастает, если между соприкасаемыми поверхностями попадают абразивные или другие включения.
Процесс истирания возникает также при взаимном обкатывании поверх –ностей деталей машин под нагрузкой и при ударах. Это явление называется трением второго рода. Оно происходит вследствие того, что в результате обкатывания или ударов на поверхностях соприкасающихся деталей появляются микротрещины, а часто и макротрещины, с последующим развитием их в глубину и образованием тонкой пленки металла, которая в дальнейшем выкрашивается и отслаивается, в результате чего возникает так называемый износ при крупном разрушении. Причинами такого износа могут быть поверхностная усталость, а также структурные нарушения металла соприкасающихся поверхностей вследствие нагрева и ударов. Рассмотренный вид механического износа часто появляется на рабочих поверхностях зубчатых и червячных передач, подшипников качения, различных опорных устройств и т.п.
Рис.8. Изнашивание в сопряженных деталях: а — нарастание износа; б — скорость изнашивания
Коррозионное изнашивание — разрушение металлических частей машин под действием окружающей среды, особенно увлажненной. Разрушение при этом виде изнашивания начинается, как правило, с наружных поверхностей, постепенно проникая вглубь. Наиболее распространенный вид коррозии — ржавление, т.е. соединение металла с кислородом воздуха. В результате коррозии неокрашенные поверхности металлических частей машин сначала покрываются темным налетом, а затем глубокими (если не будут приняты необходимые меры) разъедающими изъянами, при этом металлические части приобретают губчатую непрочную структуру. Наибольшему поражению и износу в результате коррозии подвергаются детали машин с малым содержанием углерода. Интенсивность коррозии нарастает в присутствии ряда газов и жидкостей, содержащих кислоты и щелочи.
Различают два вида коррозионных процессов изнашивания: химический и электрохимический .
Химическая коррозия проявляется при воздействии кислорода воздуха и различных газов (углекислого, сернистого), а также жидкостей, не проводящих электрического тока (масел и мазей переработки нефти, различных смол). Интенсивность химического изнашивания деталей зависит от качества материалов, из которых они изготовлены, степени окисляемости при высоких температурах и условий работы (нейтральная или агрессивная среда и др.).
Электрохимическая коррозия возникает в средах, проводящих электрический ток, т.е. в электролитах — растворах солей, кислот, щелочей, а также во влажной атмосфере и почве.
Закономерность нарастания износа элементов оборудования, особенно в их сочленениях, выражается кривой, имеющей три четко выраженных участка, которые характеризуют периоды работы сочленений (рис. 8):
I- период приработки, когда сочленения изнашиваются очень интенсивно, но скорость изнашивания постепенно снижается;
II- период нормальной работы, когда условия на поверхности сочлененных деталей становятся постоянными, а изнашивание протекает с постоянной скоростью;
III- период аварийного, наиболее интенсивного изнашивания, когда износы (зазоры) достигают недопустимых значений.
Период нормальной работы элемента оборудования (сборочной единицы, детали, пр.):
где — продолжительность приработки деталей; — износ, соответствующий максимально допустимому износу (зазору) в сопряжениях деталей; — износ, соответствующий окончанию приработки деталей; tg — коэффициент, характеризующий темп скорости изнашивания деталей.
На темп изнашивания нормального периода эксплуатации влияют следующие основные факторы: условия работы — давление, характер нагрузок, относительные скорости, температуры и др.; свойства материалов, их изменяемость в работе; условия сопряжения, характер контакта сопряженных элементов, качество обработки материала, из которого изготовлены эти элементы; своевременность и качество технических обслуживании; соответствие применяемых топлив и смазочных материалов.
Кроме изнашивания возможны явления пластических деформаций элементов оборудования, возникающие вследствие недопустимых нагрузок на эти элементы.
Изменения в машинах и их элементах выражаются следующей функциональной зависимостью:
где — эксплуатационные факторы (характер и особенности производства работ, режимы использования машин, климатические условия и др.); — конструктивные факторы (кинематические и динамические особенности машин, свойства материалов, из которых изготовлены их элементы, и др.); — технологические факторы (вид материалов, из которых изготовлены элементы машин, способы и качество их обработки и др.); — субъективные особенности и квалификация обслуживающего машины персонала (машинистов, слесарей, заправщиков и др.).
Износы в машинах и их элементах подразделяются на моральные и физические.
Моральный износ — снижение стоимости оборудования под влиянием технического прогресса.
Этот вид износа имеет две формы проявления. Моральный износ первой формы — обесценивание машин вследствие постоянного роста производительности труда в отраслях, выпускающих эти машины, а также изготовляющих для них изделия, материалы и т.п. Область распространения этой формы морального износа определяется темпами технического прогресса той отрасли народного хозяйства и связанных с ней отраслей, которые производят указанные машины или комплектующие для них изделия, материалы и т.п.
Потеря стоимости оборудования в связи с моральным износом первой формы:
где — первоначальная стоимость оборудования, руб.; — восстановительная стоимость машины или стоимость полного ее воспроизводства на момент физического износа с учетом появления более совершенных конструкций, руб.
Восстановительная стоимость оборудования через определенное время Т:
где — первоначальная стоимость машины, руб.; р — среднегодовой прирост производительности труда в отрасли и в связанных с ней отраслях, выпускающих указанный вид оборудования.
Моральный износ второй формы — обесценивание оборудования вследствие появления новой техники, т.е. аналогичных или близких к ним машин, но более совершенных конструкций. Показателем морального износа этой формы служит коэффициент снижения стоимости машин вследствие технического прогресса, выраженный в долях от первоначальной ее стоимости:
Физический износ возникает в результате механического молекулярно-механического и коррозионно-механического изнашиваний и складывается из износа конструктивных и неконструктивных элементов машин. Физический износ появляется как вследствие прямого действия машин и их элементов (износ в результате прямого действия машин), так и вследствие непрямого действия оборудования и отдельных его элементов (износ в результате бездействия оборудования — во время простоев, когда на них влияют атмосферные и другие неблагоприятные условия). Износ определяют в процентах: новые элементы в оборудовании (детали, сборочные единицы и др.) принимаются за 100 % годности, а изношенные, применение которых является невозможным, — за 100 % износа.
В стоимостном выражении физический износ оборудования определяется (% от стоимости воспроизводства):
где — сметная стоимость ремонта оборудования, руб.; — восстановительная стоимость оборудования или стоимость полного воспроизводства оборудования на момент физического его износа с учетом появления более совершенных конструкций, руб.; а — относительное значение остаточного износа, которое устанавливается из опытных данных ремонта подобного оборудования, %.
Ремонт оборудования целесообразен в том случае, если затраты на восстановление оборудования будут меньше затрат на приобретение нового, т.е.
Leave a Reply
View Comments